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ABSTRACT: All-solid-state Li-ion batteries (ASSBs), considered to beys ]
potential next-generation energy storage devices, require solid electrolytes Coating-free cathode
(SEs). Thiophosphate-based materials are popular, but these&esul
exhibit poor anodic stability and require specialty coatings on lithium metal o -
oxide cathodes. Moreover, electrode designs aimed at high energy dedsity ]
are limited by their narrow electrochemical stability window. Here, We |
report new mixed-metal halided M, ,Zr,Cls (M =Y, Er) SEs with high = 35 -
ionic conductivity up to 1.4 mS cm' at 25°C that are stable to high =
voltage. Substitution of M (M =Y, Er) by Zr is accompanied by a trigonal-
to-orthorhombic phase transition, and structure solution using combined.0 { !
neutron and single-crystal X-ray daction methods reveal a new
framework. The employment of >4 V-class cathode materials without any
protective coating is enabled by the high electrochemical oxidation stability
of these halides. An ASSB showcasing their electrolyte properties exhibits
very promising cycling stability up to 4.5 V at room temperature.
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ion batteries has accelerated development of largehGeRS;, 1.2x 10 2 S cm*;™ Lig s Si 71 4811 Clos 2.5

scale energy storage systems for electric vehicles and0 ? S cm*;** argyrodites HPSCls, 0.5% 102 S cm?;
grid application's’ The high energy density of current Li-ion and Li S Cl; 5 0.94x 102 S cmY),*®* *” and they have
batteries (LIBs) is achieved by increasing the cell voltageeen proposed to be among the most plausible candidat
which necessitates the use of organic liquid electrolytes admadk ASSBs.
specialty additives. These can pose serious safety concerns. Qo utilize sulde SEs in a 4 V-class cathode, a protec
the other hand, bulk-type all-solid-state Li-ion batteriesoating layer must be introduced on the surface of a
(ASSBs) employing inorganic solid electrolytes (SEs) areaterials because of the intrinsic instability otesul
considered promising candidates for large-scale energy stormapounds at high potentialThis originates from the
devices, as they eliminate the liquid component and allow twidation of 5 above 2.6 V2 Intensive research has yielde
possibility of implementing a lithium metal negative electrodeumerous oxides to be potential coating materials, suc

T he provision of high energy density rechargeable Léonductivities have been achieved for mardesgEs (e.g.,

to further increase energy derfsity. LiNDO,,%° LiNbq cTay £05,°* LisTic015°2 LisPO, % Ta0s,2*
Oxide SEs were one of thst families that were widely ALO;?° and Li B, ,C,03°° Nonetheless, solid electrolyt
explored. Perovskite-typgllay; o 13 21103 (0 X decomposition by reaction with other electronically ac

0.16)’ NASICON-type LiAl,sTi; {PO,)s° and garnet-type  components such as the carbon additive or current collec
Li,-LagZr,0,, are the most notable oxide SEs and exhibit goothevitable. It is also diult to control the reproducibility and
ionic conductivity ranging between*lénd 10° S cm®. homogeneity of the coating process. While the poor elect
Nonetheless, their poor mechanical deformability makesnductivity of the passivating coating layer (e.g., £iNkO
e ective contact with ceramic active materials veeyli 10 ** Scm %) is necessary to reduce interfacial reaction,
hindering ion transport at the interfdoathile favorable ionic  typically low ionic conductivity (e.g., LiNbQ 105 S
contacts between oxide SE particles can be generated by hiah-

temperature sintering, this cannot be used to improve thgeceived: November 28, 2019

oxide SE/active material interface because of reactivity of thecepted: January 9, 2020

two components under these conditioriEnis problem is Published: January 9, 2020

alleviated by the use of ductile d&llISEs where intimate ionic

contacts can be achieved by simple cold pr&sSimerionic
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Figure 1. Structural evolution upon Zrsubstitution. XRD patterns (Cu Kradiation) of (a) L 4Er; Zr.Clgand (b) Lis Y; «ZrClg (0 X
0.6). lonic conductivities and activation energies of (@) J&r, ,Zr,Clg and (d) Liz Y1 «ZrCls.

cm %) disrupts interparticle charge transpttOverall, the  cm *; subsequently annealed, 50 > S cm?).%? A high ionic

quasi-stability of sale SEs limits the practical design of conductivity of 1.49 10 * S cm? was observed recently for

electrodes for ASSBs. Therefore, a search for new SEs WitnCls,>*a material that was earlier reported in 1992 but with

good electrochemical oxidative stability is critical for futureuch poorer ionic conductivity (3® cm?).>*

improvement of ASSB performance. Herein, we report a class of chloride solid electrolytes,
Considering the multiple requirements for SEs includingi; ,M; ,Zr,Cls (M = Er, Y), with excellent room-temperature

high ionic conductivity, ductility, as well as oxidation stabilitypnic conductivity up to 1.4 mS énthat is due to a unique

we believe that chloride compounds are among the moséw structure. The conductivity is one of the highest among

plausible candidates. While the ionic radius of the chloride idhe reported chloride compounds. Most importantly, the

(re =181 pm) is almost equivalent to that ofdrulfe = superior electrochemical oxidation stability of this class is

184 pm), its lower charge means that it will bind more weakljirectly demonstrated by enabling stable cycling of ASSBs

with Li*, which is beneial for facile cation dision. Arecent using unprotected LiCgCas the cathode material. This

computational study on chloride compounds also predicts theion rms a computational predictién.

robustness to electrochemical oxidafidvioreover, even The aliovalent substitution of metal ions as a strategy to

better deformability than sté compounds is expected for introduce vacancies in a mobile ion sublattice is an established

chloride compounds, according to Fajerle that predicts approach to improve the ionic conductivity of inorganic

greater covalency for chloride compotititise members of  materials’® In our case, the metal iorf"Z¢r = 72 pm) was

the LiMCl, family (M = Sc, In, Lu, Er, Y, Ho, etc.) are some selected as a substituent for eith&r(Ex 89 pm) or ¥* (r =

of the most well-known materials that contain multiple Li90 pm) because of its large ionic radius compared to other

sites in their lattice. While trigonaMGk was reported to be  tetravalent metal ions. The; M, ,Zr,Cls (M = Er, Y)

a rather poor ionic conductori0 ' S cm* at 110°C)*°a microcrystalline powders were prepared by a simple solid-state
recent revisitation of this material reveals that it can exhib#action at 450C. Figure & shows the X-ray daction
moderate room-temperature ionic conductivityxoil@ > S (XRD) patterns of Li,Er, ,Zr,Cls materials over the range of

cm ! as a well-crystallized material and up tx 804 S X =0 0.6. The XRD pattern of;ErCl (x = 0) is in accord
cm ! in a poorly crystalline forth.Trigonal LiErCk also with its reported trigonal structure (space gfegmt)*° The
exhibits similar ionic conductivity (ball-milled 310 * S original framework which contains two octahedral Li sites is
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Figure 2. (a) Time-of-ight neutron di raction patterns and the corresponding Rietveldn@ment ts of Li, sEr 21y sClg at 280 K. The
experimental prole is shown in black crosses; the red line denotes the calculated pattern; #verntie prole is shown in blue, and
calculated positions of the Bragg extions are shown in green glEry Zr, sClg, 99.24%) and orange (LiCl, 0.76%). (b) View along the

[010] direction in Li, f£ry 21 Clg. The (Erl/Zr1)Clg octahedra are shown in blue, and Li ions are shown as red spheres. (c) Li connectivity
along the [100] direction. (d) Bond valence site energy (BVSE) model of migration barriers derived from tieel rgtructure. The site

energies are referenced to zero for Lil sites which are of the lowest energy. The portion in red corresponds to the lowest-energy Li migration
pathway along the [010] direction. The portions in blue and green correspond to overall 2D and 3D migration energies, respectively. (e) 1D
migration pathway in thabplane (delineated by the red dots, and corresponding to the red path in panel d), viewed as the yellow isosurface
of constantEgysg( ;) SUperimposed on the crystal structure.

preserved up to= 0.1 and is denoted as phase-I. When moreXRD pattern. Moreover, the same structural evolution is
Zr**ions are introduced, a new XRD pattern is obtaimed at observed for LiY; Zr,.Cls (0 X 0.6) (Figure b).

0.2 that crystallizes in tRamaspace group (phase-ll) and iS Namely, atx = 0 and 0.1, the parent trigonal structure is

|sostructurallt0 5“'“(';:'6 This %%“Ct#re is also adopted by maintained, whereas theLLiCk-like structure (phase-Il) is
Li;YCE at elevated temperatureslhe average transition observed for 4iY, ,Zr,Cls in the region 0.2 x  0.3. At

metal ion radius of LdZry Er, Llg (r = 85.6 pm) is close to . Lo

that of Ld* (r = 86.1 pm), which is likely responsible for this _h'ghefr substitution levels (0'3,67( 0.600), XRD patf[erns
behavior. As more Eris substituted by #t following an identical to those of phase-Ill ig LEr, ,Zr,Cls are obtained
excursion through a short two-phase region (8.2 0.3), (Figure S)L Thus, the average transition metal ion size is likely
another new solid-solution region (phase-lll) is observed from key factor in determining the crystal structure of these
x =0.367 0.6, which exhibits a distinctlyedent and unique  materials.
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Table 1. Atomic Parameters of,LEr, Zr, Clg Obtained from Renement of Powder Neutron Diaction at 280 K inPnma
(no. 622

atom site xa Vb c occ. Uiso (A2

Erl 4c 0.3677(3) =1/4 0.5952(10) 0.533 0.0178(5)
Zrl 4c =Erl =Erl1 =Erl =Erl =Erl

ciL 8d 0.0096(2) 0.5852(4) 0.2450(5) 1 0.0264(3)
c2 8d 0.2541(2) 0.0856(4) 0.4212(4) 1 0.0265(3)
ci3 4c 0.0023(4) =1/4 0.2244(6) 1 0.0267(6)
cl4 4c 0.7515(4) =1/4 0.5835(8) 1 0.0286(6)
Li1 8d 0.1366(11) 0.076(2) 0.089(4) 0.77(2) 0.049(3)
Li2 8d 0.376(3) 0.070(4) 0.103(9) 0.30(2) 0.038(7)
Li3 8d 0.561(5) 0.085(7) 0.101(19) 0.193(13) 0.016(7)

®Re ned lattice parametess= 12.0389(2) Ab = 11.1664(2) A, and= 6.4069(1) A. Rened composition: yiEr sZro +Cle.

Figure 3. Phase evolution ofsM, ,Zr,Clg (M = Er, Y) upon Zr substitution.

The ionic conductivities at 26 and activation energies of Particularly important is that the electronic conductivity of the
Li; ,Er, ,Zr,Clg are shown ifrigure & where the activation material ax = 0.367 is very low,10 1°S cm?, indicative of a
energies were determined according to the Arrhenius equatiuire single-ion conductdfigure SB Figure 8l shows the

- ionic conductivities of thesLiY; ,Zr,Cls series. Similar to the
T=ArexpbEllgT) Er compositions, the ionic conductivity increases as thore Y
ions are replaced by “Zrions. The maximum ionic
conductivity (1.4 10 * S cm?! at 25°C) is achieved fot
= 0.5 (phase-Ill), which also exhibits the lowest activation
energy (0.33 eV).
£ The crystal structure of phase-IIl was solved by single-crystal
-ray diraction for Lj gt Zr, Llg at 280 and 200 K (see

where is the ionic conductivity, the temperature in Ky
the pre-exponential factBfthe activation energy, agdhe
Boltzmann constant. Typical Nyquist plots of SEj Ti cell
and Arrhenius plots are shownFigure S2The trends of
ionic conductivities and activation energy parallel that
structural evolution upon Zr-substitutionEACE (x = 0) _ _ \
exhibits moderate ionic conductivity ¢870 °S cmtat25  Tables S1S6for details). The structure of No.&roCls is

°C). The conductivity increases t08.60 4 S cm? for x = as_sumed to be |sostr'uctural, given its |dent|call XRD pattern
0.1 where the original trigonal structure is preserved (phasetfjigures landS). While three Li sites were easilynable

and increases further to .70 *S cm' atx = 0.2 owing to ~ from single-crystal analysis despite the dominant heavy atoms,
the formation of phase-Il. In the subsequent two-phase regitime-of-ight powder neutron daction (PND) was per-

(0.2 x 0.367) that encompasses phase-Il and lll, the ioniormed on polycrystalline, fr, &Zro £Clg to more accurately
conductivity continues to increase as phase-lll grows in relatiosate the three Li sites andme their occupancies. Lithism
fraction. The maximum ionic conductivity ofx1.10 3 S negative neutron scattering length allows it to be easily
cm lis obtained at = 0.367 where pure phase-lll is obtained.distinguished (Er, 7.8; Zr, 7.2; Cl, 9.6; 1i9 fm). The PND
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Figure 4. Electrochemical performance of all-solid-state cells using chloride solid electrolytest $aid) and second (dashed) charge
discharge voltage prtes of LiCoQ/chloride-SHLi;PS|Li;1Sns cells using (a) Li g3l 63 0.36Cle, LisPS and (b) Li, 5Yo 250 Clg as the

solid electrolyte in the cathode composite at a current density of 0.11 mA(crf.1 C). (c) Nyquist plots of LICO@SE|LisPS||Li,;,Sry cell
measured after the sixth charging process. (d) Room-temperature cycling performance of theg/dhloa@e-SHLi;PS|Li,;Sry cell
employing Lj 310 63Z0.36Cls @S the chloride SE in the cathode composite. The cycling test was conducted at a current density of 0.55 mA
cm 2 (3.0 4.3 V vs. Li/Ll).

pattern and corresponding Rietveldre shown ifrigure 2. signi cant vacancy population in each, between 25% and 80%
The data was initially using the single-crystal modedirig (Table ).
the framework ions; Er, Zr, and Cl) andhireg the positions Migration pathways for‘libns were analyzed by the bond

of the lithium sites. Finally, because of the large neutrordlence site energy (BVSE) method developed by Adams et
absorption cross section of Er, the Er/zr ratio wesbto the ~ al°>*® The calculated energy landscape of the lowest
single-crystal value, and the other parameters were fre@jivation-energy Li-ion pathway is shovigre @ (note
re ned except for a constraint on total Li occupancy for chargBat owing to the accuracy of softBV, the overall activation
balance (see Experimental Methods in Sheporting energy is higher than the experimental value, _but |t_ still
Information for details). The resultTéble ) is almost prowdes an approximate assessment of the relative helght of
identical to the single-crystal solutivab{e S). the t_)a_rrleﬁgf’). The BVSE study suggests one metastable site
Figure B shows the [010] view of the phase-lll ‘Egr '—g '0852’ ”g”:)ewééi)r)‘ ort]:tahehdral |nterst|t|al“fnf:a”( 8d, f?]t( /
Li, Ero £Lro Llg lattice, illustrating the arrangement of the -104, 0.250, 0.5 that shares atrigqna race with (Erl
(IEZr';Er(;'éZI;'SOCC?ahedra and the L? ions populgting exis  4'1) octahedraigure SB The [Li3 Oct. Li3 Li2] zigzag
channel. A comparison dfiet frameworks of phase-I chain running along the [010] direction is predicted to be th_e
(Li;ETCh), phase-ll (akin to LiuCl), and phase-lll is most favorable 1D ion transport pathway, shov.vn'as the portion
shown inFigure 3illustrating the derences between them. of the landscape in red. This pathway alortgetkis in theb

While the phase transformation from phase | to Il involve lane intersects with other chains of [Li3 Li1] running in
P ) phase e ac plane Figure Spto form a 3D transport network
rearrangement of the metal ions, the transition of phase-ll

phase-lll includes tilting the (Er/Zr)Qictahedra. The molar mi\;;er::tlill)r? aggm@/;y r}lsgfgl(gprllitceiﬂylr;hgor\?vﬁninar:ﬁeb{)uoerzd 'I\'/f;(laenlcli;
volumes of Li,En ,Zr,Clg and the lattice parameters of energy mapHigure 2) viewed as the yellow isosurface of
phase-lll obtained from a full pattern (Le Ba#re shown in constantays; for lithium in the model, superimposed on
Figure S5The linear relationship with variatiox ton rms the crystal structure. In comparison, the BVSE map %ot the

the existence of a solid solution in phase-lll, as expected. Tdi'%omposition (trigonal JErCL, space group3ml, exhibits

very signicant dierence between the phase-l, Il, and Il energy barriers for Li-ion migration that are about 1.5-fold
frameworks is that whereas phase-I and phase-Il contain tWigher Figure Sy This analysis highlights the vital role that
octahedral Li sites, an additional tetrahedral Li site is createdihi new Li3 site induced by Zr subsitution plays in changing
phase-Ill {able landFigure Spthat is about 20% occupied. the overall energy landscape. It explains the observed high
In this structure, the Lil and Li2 octahedra share a face, afghic conductivity, which is also facilitated by the relatively
the additional Li3 tetrahedra connect the Lil/Li2 pairs viaveak interaction of "Livith the monovalent Chnion. The
trigonal face sharing to formi-ldn chains along theaxis vacancies introduced in the Li sites are undoubtedly also a key
(Figure 2). The lithium is distributed over all three sites, withfactor for the enhanced ionic conductivity. Ab initio molecular
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dynamics studies are underway to furtherrrootthese exhibits high ionic conductivity of up to 1.4 mS atr25°C,
ndings but are beyond the scope of this work. as a result of the evolution of a new ionically conductive phase
These fast-ion conducting lithium metal (Zr, Er, Y) halidesipon Zr-substitution. Most importantly, the excellent electro-
show high promise as solid electrolytes that obviate the neelgemical oxidation stabilities of those chloride SEs are directly
for cathode coating layers. To demonstrate this, we comparmdeimonstrated in full cells, which enable the use of noncoated 4
the electrohemical performance of bare LiGd® either V-class cathode material without any noticeable oxidative
LisPS glass or Li,M; ,Zr,Cls (M =Y, Er) as the SSEithin interfacial decomposition. We believe these developments
the cathode composite and usingP&i glass as the provide an important breakthrough for practical design of
“separatdrin the cell in both cases. Thest and second ASSBs.
chargedischarge prées of LiCOQSE|LisPS|Li;;Sry cells
with a current density of 0.11 mA éare shown iffigure 4. ASSOCIATED CONTENT
The composite electrode was prepared by mixing1#@dO  *  gypporting Information

chloride solid electrolyte at a weight ratio of 70:30. For thgne Supporting Information is available free of charge at
counter electrode, ;81 powder (20 wt %) was added 10 hyps://pubs.acs.org/doi/10.1021/acsenergylett.9b02599
Li,;Sn; (80 wt %) to enhanceLdli usion:” When LiPS is . : . .
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