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Abstract
Understanding and characterizing organics in aquatic environments is a great challenge for environmental monitoring, 
especially for the oil sands industry due to the complexity and potential toxicity of dissolved organics in water. To date, 
significant efforts have been made in investigating the toxicity of naphthenic acids, although other compounds may also 
contribute to the toxicity of oil sands process-affected water (OSPW). Here, we present a case study showing a systematic 
approach for profiling the organic composition of OSPW and environmental water samples by concentrating and separating 
dissolved organics through complementary liquid–liquid extractions followed by positive- or negative-ion mode ultrahigh 
resolution mass detection. Our comparative investigation shows clear differences in the composition of dissolved organics 
(homologues particularly) not only between OSPW samples and environmental water samples, but also differences among 
oil sands operators. Sulfur-containing compounds (especially the  SOn classes) appear to have great potential to be used for 
evaluating the impact of OSPW, while our understanding of oxygen-only containing compounds should not be limited to 
 O2 (i.e., classic naphthenic acids), but rather can be broadened to include many other compound classes (for instance  On, 
n = 1–9). Systematic profiling of water samples should be more widely implemented for monitoring the origin and transport 
of organics in aquatic ecosystems of the oil sands development region, northeastern Alberta, Canada.

Keywords Environmental forensics · Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) · Oil 
sands · Alberta

Introduction

Canadian oil sands contain over 168 billion barrels of proven 
unconventional petroleum reserves that are currently being 
extracted by either surface mining or in situ extraction at the 
rate of 1.8 million barrels per day (ERCB 2013). Surface-
mined bitumen is processed via the Clark hot (79–93 °C) water 
method to separate oil from other constituents such as clay, 
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sand, dissolved metals, and organic compounds (Clark 1944; 
Masliyah et al. 2004). The resulting oil sands process-affected 
water (OSPW) is stored within on-site tailings ponds. It has 
been estimated that approximately one trillion liters of OSPW 
are currently being retained in these manmade containment 
structures (Ferguson et al. 2009; Herman et al. 1994; Kannel 
and Gan 2012; Quagraine et al. 2005). As the volume of OSPW 
has accumulated, there is a growing concern about uninten-
tional release of the OSPW into the Athabasca River through 
groundwater seepage or catastrophic failure of a containment 
dyke, which would have profound impacts on the aquatic eco-
systems of northeastern Alberta and beyond (Ferguson et al. 
2009; Giesy et al. 2010; Gosselin et al. 2010; Headley and 
McMartin 2004; Rowland et al. 2011; Woynilowicz et al. 2005).

The potential environmental impact of OSPW depends on the 
chemical composition of the dissolved constituents, which are 
not yet fully understood. Detecting and quantifying individual 
organics of OSPW on the molecular level is challenging, mainly 
due to the complexity of OSPW which contains thousands of 
chemicals from a wide range of compound classes. Ultrahigh 
resolution Fourier transform ion cyclotron resonance mass spec-
trometry (FTICR-MS), coupled with soft ionization techniques 
such as electrospray ionization (ESI) and atmospheric pressure 
photoionization (APPI), allows the characterization of complex 
mixtures at the molecular level, with the benefit of extremely 
high resolving power (> 1,000,000) and accurate mass measure-
ments (ppb) (Marshall and Rodgers 2004, 2008). This technol-
ogy has been widely used in analyzing natural organic matter 
of various environmental origins and has led to the recent resur-
gence in profiling and characterizing OSPW from the oil sands 
region (Barrow et al. 2010; Grewer et al. 2010; Headley et al. 
2011, 2013a, b). Similar techniques but with lower resolving 
power are also under development (Bataineh et al. 2006; Martin 
et al. 2008; Frank et al. 2014; Huang et al. 2016).

Previous applications of FTICR-MS have primarily been 
focused on characterization of naphthenic acids (NAs) (Head-
ley et al. 2013a). Negative-ion (−)ESI has emerged as the 
method most widely used for ionization (Headley et al. 2009). 
Compounds from (−)ESI profiling are dominated by oxygen-
containing compounds (to a lesser degree by sulfur-containing 
compounds), making it particularly useful for the study of NAs 
(Grewer et al. 2010; Ross et al. 2012; Headley et al. 2013a; 
Nyakas et al. 2013; Pereira et al. 2013; Frank et al. 2014). Bar-
row et al. (2010) investigated a single OSPW sample via both 
negative-ion (−)ESI and positive-ion (+)ESI profiling. Distinct 
from (−)ESI mode, compounds detected in (+)ESI mode are 
mainly sulfur and nitrogen-containing compounds, potentially 
broadening the capacity of FTICR-MS profiling. Investigation 
of petroleum fractions via FTICR-MS also suggests that results 
from (−)ESI and (+)ESI are complementary to each other and 
provide a more comprehensive characterization of compounds 
in combination(Ávila et al. 2012). Recently, other ionization 
techniques, such as APPI, were also explored for detecting a 

broader range of compounds including nonpolar hydrocarbons 
in OSPW and environmental samples (Barrow et al. 2015).

There are also multiple choices for extracting and preparing 
samples for analytical procedures. The effects of pH and solvents 
have been discussed (Headley et al. 2007, 2013b; Barrow et al. 
2015; Huang et al. 2016). Extraction methods for polar organ-
ics vary too. Solid phase extraction (SPE) has been successfully 
applied to extract polar organics from water samples (Headley et al. 
2011; Reinardy et al. 2013; Frank et al. 2014; West et al. 2014; 
Barrow et al. 2015), while for studies requiring larger amounts of 
organics for multiple investigative purposes, liquid–liquid extrac-
tion (LLE) has been more commonly used (Grewer et al. 2010, 
Ross et al. 2012; Nyakas et al. 2013; Han et al. 2016). Overall, 
differences between the selected analytical approached can lead 
to significant variations in quantity and compositions of organic 
compounds in a given sample (Grewer et al. 2010; Yi et al. 2014).

Research activities at InnoTech Alberta and University of 
Victoria have been aimed at improving organic profiling in 
OSPW and environmental samples with a tractable consist-
ency in sample preparation and analytical conditions (e.g., 
liquid–liquid extraction followed by ESI ionization, Gibson 
et al. 2011; Nyakas et al. 2013; Yi et al. 2015; Han et al. 
2016). The objective of this study is to explore molecular 
profiling in both (−)ESI and (+)ESI modes in a complemen-
tary manner. Our results are expected to provide more com-
positional information on dissolved organics in OSPW at the 
molecular level, and to enable further characterization and 
differentiation of OSPW from the natural background for 
environmental monitoring and water resource management.

Materials and methods

Chemical and reagents

Water, methanol, ethyl acetate (EA), NaOH, formic acid, and 
ammonium hydroxide (≥ 25%) were LC/MS grade and obtained 
from Sigma-Aldrich (St. Louis, MO). Dichloromethane (DCM) 
and phosphoric acid were HPLC grade and were obtained from 
Sigma-Aldrich as well. Standard “ESI tuning mix” solution was 
purchased from Agilent Technologies (Palo Alto, CA).

Sample collection

Ten water samples were analyzed in this study. These sam-
ples were obtained from the oil sands region of northeastern 
Alberta, Canada, via multiple sampling campaigns coordi-
nated by Alberta Environment in 2009. The OSPW samples 
were collected from tailings ponds at three mine sites by 
employees from InnoTech Alberta, with the assistance of on-
site operational staff. Lake and seepage samples were grab 
samples collected by InnoTech Alberta and environmental 
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consultants during geophysical surveys (Gibson et al. 2013). 
During the sampling campaigns, field blank samples were 
collected with distilled water following identical sampling 
procedures for the purpose of QA/QC control.

Routine measurements of electrical conductivity and 
total organic carbon in water samples are listed in Table 1. 
Samples were refrigerated immediately after collection and 
were shipped to InnoTech Alberta, Victoria Lab, BC for pro-
cessing and redistribution. In this investigation, we consider 
OSPW samples as water heavily impacted by the industrial 
processes of oil sands development, while samples from 
lakes and seepages are referred as environmental samples, 
representing local natural aquatic environments presumably 
with minimal industrial impact.

Liquid–liquid extraction

Two liquid–liquid extractions (LLEs) were performed using EA-
DCM mixtures to enrich extractable organic compounds prior to 
FTICR-MS analysis. Extractions were performed under contrast-
ing pH conditions (acidic vs basic) to separate dissolved organics 
in water samples into two fractions based on acidity/basicity. Fig-
ure 1 illustrates the schematic workflow of the two extractions. 
For the acidic extraction (i.e., LLE-1), 3-mL aliquots of indi-
vidual water samples in 5 mL borosilicate glass tubes were added 
with 15 μL formic acids and extracted with 1 mL of EA-DCM 
(10:2, v/v). For the basic extraction (i.e., LLE-2), 3-mL aliquots 
of individual water samples were thoroughly mixed with 60 μL 
of 25% ammonium hydroxide solution, followed by extractions 
with 1 mL of EA-DCM (10:2, v/v). After a 30-s vortex mixing 

and subsequent clarification by centrifugation at 4000 rpm for 
10 min, the samples were placed at room temperature for 10 min. 
A 0.5-mL aliquot of the upper organic phases from each extrac-
tion was carefully transferred to a 3-mL borosilicate glass tube 
without disturbing the organic/aqueous interface and then dried 
under a gentle nitrogen flow at room temperature in a nitrogen 
evaporator. The residue of LLE-1 extraction was reconstituted in 
0.5 mL of a mixed acetonitrile–water-25% ammonium hydroxide 
(60:39.2:0.8, v/v) solution containing 2 μL of the “ESI tuning 
mix” solution. The residue of LLE-2 extraction was reconstituted 
in 0.5 mL of a mixed acetonitrile–water-formic acid (60:39.8:0.2, 
v/v) solution containing 2 μL of the “ESI tuning mix” solution. 
After vortex mixing for 10 s and centrifugation at 10,000 rpm 
for 1 min in a microcentrifuge, the resulting clear solution was 
directly infused into the FTICR-MS and analyzed in the (−)ESI 
mode for the LLE-1 fraction and in the (+)ESI mode for the 
LLE-2 fraction, respectively.

FTICR‑MS

All mass spectra were acquired on a Bruker 12-Tesla 
Apex-Qe hybrid quadrupole FTICR mass spectrometer 
(Billerica, MA). Each sample was infused into the MS 
instrument with a syringe pump at a flow rate of 3 µL/
min. The instrument was operated in either (+) or (−)ESI 
mode within a scan range of m/z 150–1100. Each mass 
spectrum was recorded from an accumulation of 400 scans 
with the broadband acquisition and a data acquisition size 
of 1 MBps. Typical ESI–MS parameters were capillary 
electrospray voltage of 3800 V; spray shield voltage of 
3500 V; source ion accumulation time of 0.1 s; and colli-
sion cell ion accumulation time of 0.2 s.

Table 1  Sample information analyzed in this study

Water samples were generally categorized into two types: OSPW sam-
ples collected from tailings ponds versus environmental samples col-
lected from natural water bodies. Routine measurements for bulk inor-
ganic (i.e., conductivity) and organic content (i.e., TOC) are included

Sample ID Water type Conductivity TOC Notes
(µS/cm) mg/L

PAW001 OSPW sample 2530 43.7 Operator A
PAW002 OSPW sample 1535 58.6 Operator A
PAW003 OSPW sample 3880 62.7 Operator B
PAW004 OSPW sample 3780 63.0 Operator B
PAW007 OSPW sample 2325 N/A Operator C
PAW008 OSPW sample 1001 N/A Operator C
S07A Environmental 

sample
4600 21.5 Seepages

S01A Environmental 
sample

2670 10.9 Seepages

S09-239 Environmental 
sample

232 12.4 Lake

S09-092 Environmental 
sample

25 35.6 Lake

Extraction 1

(-)ESI-FTICR-MS
MS dataset 1

LLE-1

Extraction 2

(+)ESI-FTICR-MS
MS dataset 2

LLE-2

Water Sample

EA-DCM (10:2, v/v)
pH ~2

EA-DCM (10:2, v/v)
pH ~10

0.2% NH4OH 0.2% FA

Liquid LiquidExtraction

Fig. 1  Schematic workflow for liquid–liquid extractions to fractionate 
dissolved organics into two extractions, LLE-1 and LLE-2
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Data processing

Each set of the raw mass spectra from the OSPW and envi-
ronmental samples were batch-processed using a custom 
VBA script, which has been described elsewhere (Han 
et al. 2008), within the instrument vendor’s data process-
ing software, DataAnalysis®. With this VBA script, the raw 
mass spectra were internally calibrated with the reference 
masses of the “ESI tuning mix” solution. Monoisotopic 
peaks corresponding to the isotopic distribution patterns on 
each spectrum were determined, and those with signal-to-
noise ratios ≥ 10 were picked to generate a peak list which 
contained the individual m/z and the peak intensity values 
for each monoisotopic peak. The peak list from each mass 
spectrum was further batch-processed with another custom 
software program written within the  LabView® development 
suite (National Instruments, Austin, TX) to align and com-
bine monoisotopic masses across different samples within an 
allowable mass error of ± 1 ppm. The combined peak table 
from each mass spectral set was then exported and saved 
as a Microsoft Excel file which was used for subsequent 
data presentation and multivariate statistics. The peaks that 
showed higher peak intensities in the solvent blank than in 
any of the water samples were excluded and removed from 
the table.

Data analysis and presentation

The Kendrick mass defect (KMD) plots are used in this study 
to present and illustrate the mass distribution of the detected 
compounds in individual samples. The Kendrick mass and 
KMD values (Kendrick 1963; Marshall and Rodgers 2008) 
for each peak were calculated from the Système international 
d’unités (SI) mass [Eqs. (1) and (2), respectively]:

where nominal Kendrick mass is the Kendrick mass which is 
rounded to the nearest integer (Marshall and Rodgers 2008). 
In a KMD plot, a series of homologous compounds differing 
from each other by a repeating unit (e.g., a  CH2 group), yet 
having the same KMD value, can be easily identified as hav-
ing common y-axis values. The identification of homologue 
series further assists with subsequent elemental composition 
assignments (Hughey et al. 2001). The relative contributions 
(RC), which are calculated as the intensity of an individual 
peak divided by the total intensity of all detected peaks, were 
used to characterize the organic compositions. It is impor-
tant to note that the RC values cannot be treated as accurate 
measures of absolute concentration. This is because differ-
ent compounds may have different ionization efficiencies 

(1)KendrickMass = SImass × 14∕14.01565

(2)
KendrickMass defect = (nominal Kendrickmass

−Kendrickmass) × 1000

in such complex mixture, which are generally referred as 
ion depression or matrix effect (Barrow et al. 2010). How-
ever, RC does generally reflect compositional changes in a 
complex mixture of organics (Hughey et al. 2007). Princi-
ple component analysis (PCA), using SIMCA-P + (V12.0, 
Umetrics AB Umeå, Sweden), was carried out based on the 
RC values in order to statistically compare compositional 
differences among water samples. Molecular formulas of 
the detected homologues were computed based upon the 
accurately measured monoisotopic masses with a custom 
algorithm written in the MATLAB R2011 suite (Yi et al. 
2015). Heuristic filtering based on seven golden rules was 
applied in the algorithm in order to infer rationale molecular 
formulae with the assistance of identification of homologues 
(Kind and Fiehn 2007; Koch et al. 2007). The procedure 
for data presentation, compositional sorting, and graphical 
imaging was programmed and standardized using Matlab.

Results and discussion

Complementary liquid–liquid extraction

Water samples such as OSPW and environmental samples 
from the oil sands region are compositionally complex, con-
taining dissolved organic compounds and inorganic salts 
(Table 1).The aim of this work is to apply direct infusion 
ESI-FTICR-MS for organic profiling of OSPW and to inves-
tigate both (−)ESI and (+)ESI results in a systematic manner 
to enable comparison with environmental samples from the 
region. Ten water samples, including six OSPW samples and 
four environmental samples were selected for this study. We 
designed a sample preparation procedure using two LLEs to 
fractionate dissolved organic compounds into two extrac-
tions under different pH conditions (i.e., acidic vs basic 
as shown in Fig. 1), which was followed by correspond-
ing (+) and (−) ESI-FTICR-MS determination via direct 
infusion. The choice of (+)ESI or (−)ESI mode for down-
stream FTICR-MS detection was dependent on the nature 
of the extracted organic compounds. For the LLE-1 fraction 
that was performed at low pH conditions, it was anticipated 
that the extracted organics would best be characterized by 
analysis using (−)ESI–MS after alkylating with ammonium 
hydroxide. On the contrary, for the LLE-2 fraction that was 
performed at high pH conditions, it was anticipated that the 
extracted organic compounds would best be characterized 
by analysis using (+)ESI–MS after acidifying with formic 
acid. For both LLE-1 and LLE-2 fractions, the same organic 
solvent of EA/DCM (10:2, v/v) was used to exclude the 
potential solvent effects (Headley et al. 2007, 2013b; Huang 
et al. 2016). It is also important to note that we intentionally 
chose a solvent that is lighter than water, making it possible 
to transfer the organic extracts in an agitation-free manner. 
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In this way, organic compounds dissolved in water samples 
were extracted into two fractions on the basis of their acid-
ity/basicity followed by subsequent FTICR-MS analysis in 
either (+) or (−) ion detection mode, while the inorganic 
salts were left in the aqueous phase, so as not to interfere 
with downstream FTICR-MS detections.

Thousands of compounds (i.e., peaks) were detected in 
the water samples (Fig. 2). Between 1486 and 2414 com-
pounds were identified in LLE-1, while between 1095 and 
3129 compounds were detected in LLE-2 (Table 2). The 
number of detected compounds was consistent with the 
range reported for (−)ESI detections (Nyakas et al. 2013; 
Yi et al. 2015), but significantly less than the number of 
compounds detected by APPI (between 6000 and 15,000 
as reported by Barrow et al. 2015). Our approach does not 
profile the compositions of organics in the most compre-
hensive manner as compared to results presented by Barrow 
et al. (2015). But this study certainly improved the profiling 
results by ESI ionization, and the advantage of continuing to 

explore the ESI detection in parallel with the development 
of APPI method will be discussed in the following section.

It is very interesting to note that LLE-1 and LLE-2 appear 
to target different sets of compounds. Figure 2b demon-
strates minor overlaps in detected peaks when raw spectra 
for LLE-1 and LLE-2 are compared in detail, peak by peak. 
Table 2 further lists the number of common peaks that were 
detected in both LLE-1 and LLE-2. From sample to sam-
ple, 64–100 compounds are found to be common in both 
fractions, which accounts for less than 6% of compounds in 
LLE-1 and less than 9% in LLE-2. The low percentage of 
overlapping compounds suggests that LLE effectively sepa-
rates different organic compounds into two fractions.

Visualizations in KMD plots provide another line of evi-
dence of the complementary nature of LLE-1 and LLE-2. 
Taking PAW001 as an example, apparent differences are 
observed between LLE-1 (Fig. 3a) and LLE-2 (Fig. 3b). 
Major peaks (RC > 2000 ppm) in LLE-1 are character-
ized by KMD values ~ 200 with an oval pattern in mass 
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ESI(+)] and indicating complementary natures between LLE-1 and 
LLE-2
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Table 2  Number of compounds (all peaks and homologues) detected in two LLE fractions

The number of common peaks, detected in both fractions, is also presented

Fractions PAW001 PAW002 PAW003 PAW004 PAW007 PAW008 S01A S07A SB09-092 SB09-239

LLE-1
 All peaks 2193 2143 2340 2414 2123 2317 1486 1620 1955 1753
 Homologues 776 723 805 821 732 828 568 622 639 568

LLE-2
 All peaks 1691 1812 1777 1906 3129 2772 1095 1144 1203 1111
 Homologues 588 601 647 672 1234 1095 273 290 306 292

Common peaks 66 68 98 108 74 64 86 81 100 73

LLE-1 
All Peaks

LLE-1 
Homologues

LLE-2 
All Peaks

 LLE-2 
Homologues

PAW001 PAW001

PAW001PAW001

(a)

(c)

(b)

(d)

Fig. 3  Kendrick plots visualize composition of all detected peaks (a, 
b) and homologous series (c, d) in PAW001. A significant proportion 
of detected peaks is homologues, which show similar mass distribu-

tion patterns as demonstrated in KMD plots. a All peaks detected in 
LLE-1; b all peaks detected in LLE-2; c homologous series identified 
in LLE-1; d homologous series identified in LLE-2



Environmental Earth Sciences  (2017) 76:828  

1 3

Page 7 of 13  828 

distribution. In contrast, major peaks in LLE-2 are charac-
terized by lower KMD values (between 100 and 200), dem-
onstrating a sporadic pattern in mass distribution. Similar 
effects are observed for the homologues series (Fig. 3c, 
d), which will be discussed in the following sections. It is 
important to note that there are only 66 common compounds 
detected in both fractions, whereas 2193 compounds were 
detected in LLE-1 and 1691 compounds were detected 
in LLE-2 (Table 2). Collectively, 3813 compounds were 
detected in the combined LLE-1 and LLE-2 fractions for 
PAW001 as demonstrated in Fig. 3.

Nyakas et al. (2013) showed ultrahigh-performance liq-
uid chromatography (UHPLC) fractionation prior to FTICR-
MS was highly beneficial for detecting and characterizing 
more organic compounds in an OSPW sample. As illus-
trated, ~ 2200 to ~ 2800 peaks were detected in the OSPW 
sample if a single (or double) UHPLC was applied (Nya-
kas et al. 2013). However, the UHPLC fractionation was 
time-consuming. In this study, 2123–2414 compounds were 
detected in the LLE-1 fraction for OSPW samples (Table 2), 
which is comparable to the offline UHPLC fractionation. In 
addition, over 1500 compounds were detected in LLE-2 by 
(+)ESI mode. As shown here, profiling two LLE fractions 
could be a time-efficient alternative to UPHLC fractiona-
tions for comprehensively characterizing dissolved organic 
compounds in OSPW.

Abundant homologues in both LLE-1 and LLE-2 results 
are also a key feature in efforts to perform elemental assign-
ments with accurate mass measurements (Hughey et al. 
2001; Koch et  al. 2007; Marshall and Rodgers 2008). 
Table 2 lists numbers of detected compounds, as well as 
numbers of homologues in both LLE-1 and LLE-2 fractions. 
Approximately 30% of peaks are found to be homologous 
series in this investigation, which is consistent with the pre-
vious study using LLE sample preparation (Yi et al. 2015), 
but a significant increase in proportion compared to those 
without LLE pre-treatment (~ 15% in Gibson et al. 2011). 
More importantly, mass distribution patterns for the homolo-
gous series resemble the distribution for all peaks. Taking 
PAW001 as an example, Fig. 3 illustrates the mass distribu-
tion of all detected compounds (2193 compounds for LLE-1 
Fig. 3a; 1691 compounds for LLE-2 Fig. 3b) compared with 
the distribution of homologues alone (776 homologues for 
LLE-1 Fig. 3c and 588 homologues for LLE-2 Fig. 3d). We 
find the mass distributions of homologues are very similar 
to mass distributions for all detected compounds, suggest-
ing profiles of homologues capture the main characteristics 
of dissolved organic compounds in OSPW. Furthermore, 
using homologue distributions only (Supplementary Fig-
ure  1) appears to capture notable differences between 
OSPW samples and environmental samples in both LLE-1 
and LLE-2 fractions. Given that homologous series provide 
significant advantages via improved confidence in elemental 

assignments, we further focus discussions on a comparison 
between OSPW and environmental samples using homo-
logues only (both LLE-1 and LLE-2).

Overall, the lack of overlap between LLE-1 and LLE-2 
fractions, and high percentages of homologous series 
detected in the profiles are two advantages of using com-
plementary LLE fractions for characterizing water samples 
such as OSPW that contain complex mixtures of organics.

Comparison of OSPW with environmental samples

Principle component analysis (PCA) is used as an explora-
tory tool to examine and illustrate differences among sam-
ples based upon hundreds of homologues. Score plots of 
the first two principal components (PC2 versus PC1) for 
LLE-1 (Fig. 4a) and LLE-2 (Fig. 4b) are shown for OSPW 
and environmental samples. As shown in the score plots, 
OSPW samples are clearly separated from environmental 
samples. In the LLE-1 (Fig. 4a), compositional differences 
in dissolved constituents explain 81% of the variance in the 
dataset (PC1, 63%; PC2, 18%). The distinction between 
environmental samples and OSPW is largely based on PC1, 
while the variance among the OSPW samples is mainly 
explained by PC2. OSPW samples from operators A and B 
(Table 1) are more similar to each other than to samples from 
operator C. Based on the score plot for LLE-2 (Fig. 4b), sig-
nificant variance observed within the dataset (77%) could be 
explained by the first two PCs; PC1 and PC2 accounting for 
57 and 20%, respectively, of the variation. Again, four envi-
ronmental samples cluster closely, while the OSPW samples 
show relatively large variability in PC1 and PC2 space.

It is interesting to note that excellent grouping of OSPW 
samples from different operators is observed from the LLE-2 
fraction. As shown in Fig. 4b, the samples from operators 
A and C can be distinguished based mainly on PC1, while 
operator B can be readily distinguished based on PC2. 
Although based on a limited set of samples (n = 10), the 
PCA analysis suggests the potential of LLE-2 for tracing 
OSPW from various operators.

Barrow et al. (2010) analyzed a single OSPW sample in 
both negative-ion mode and positive-ion mode with two ion-
ization methods (ESI and APPI). Because more peaks were 
detected with APPI, Barrow et al. (2015) further investigated 
multiple samples (including OSPW and environmental sam-
ples) with (−)APPI and (+)APPI. The PCA analyses also 
demonstrate significant differences between environmental 
samples (such as river water) and OSPW. However, the clus-
tering of OSPW between operators based upon APPI is not 
as distinct as those presented in ESI (Figure 5 & 9 in Barrow 
et al. 2015 vs Fig. 4 in this study). Although more peaks are 
profiled by APPI in both positive- and negative-ion modes, 
use of ESI remains a practical alternative, especially when 
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ESI results (both LLE-1 and LLE-2) indicate the potential 
for fingerprinting individual operators.

Distinctions in elemental compositions

Given the statistical differences in organic compositions 
revealed by PCA, we further explore the elemental compo-
sitions of the detected organic compounds (homologues in 
particular) among the ten samples. Based upon the accurate 
masses determined by ultrahigh resolution FTICR-MS and 
an allowable mass tolerance of ± 1 ppm, it is possible to 
infer the rational molecular formulae for many of detected 
compounds, particularly for hundreds of the homologues 
identified by the KMD plots. To do this, the unique ele-
mental compositions for one or a few low molecular weight 
members of a homologous series are computed and the 
assignments are then used to extrapolate the chemical for-
mulae for the remaining compounds within the homologous 
series. During the molecular formula computation, several 
chemical rules were applied in the algorithm to filter out 
formulae not likely to be observed in nature. For example, 
the H/C and O/C ratios were limited to between 0.2–3.1 
and 0–1.2, respectively, while the N/C and S/C ratios were 
restricted to the ranges of 0–1.3 and 0–0.8, respectively 
(Kind and Fiehn 2007). The number of rings plus double 
bond equivalents (DBE) was also examined. In this way, the 

unique molecular formulae for the majority of homologues 
(~ 80%) were generated.

The homologue compounds are categorized into five 
major heteroatom classes, including  On,  NOn,  N2On,  SOn, 
and  S2On (where n = 1–12 in all cases), which is consistent 
with the classification of Headley et al. (2011). For example, 
 SOn refers to compounds that contain only one sulfur and 
multiple oxygen atoms varying between 1 and 12. Other 
compound classes are defined similarly. Taking PAW001 
and SB09-239 as representatives of the OSPW and envi-
ronmental samples, respectively, Fig. 5 shows a typical RC 
distribution for the LLE-1 fraction, and Fig. 6 shows typical 
results for the LLE-2 fraction. In general, dissolved organic 
compounds in all samples are found to be dominated by 
oxygen-containing classes  (On) in LLE-1, with the appear-
ance of one nitrogen  (NOn) and one sulfur  (SOn) classes, 
which is consistent with the findings of previous investiga-
tions (Barrow et al. 2010, 2015). The RCs of two nitrogen 
 (N2On) and two sulfur  (S2On) classes are minor if not absent.

The  O2 class is commonly regarded as “classic” naph-
thenic acids (Holowenko et al. 2002). Lee (1940) introduced 
the term “oxy-naphthenic acids” to describe compounds 
which are formed after mild oxidation of the classic naph-
thenic acids (Lee 1940). Other studies reported mono- and 
dioxide naphthenic acids (i.e.,  O3 and  O4 classes) in extracts 
from OSPW (Han et al. 2009) and Grewer et al. (2010) urged 
investigators to broaden the measurements of potentially 

Fig. 4  PCA score plots of homologous series showing the compositional differences between OSPW and environmental samples. a PCA score 
plot of the results from LLE-1; b PCA score plot of results from LLE-2
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toxic compounds in OSPW beyond the  O2 classes. Other 
oxidized acids were included in their investigation, as they 
demonstrated for the  O3 to  O5 classes (Grewer et al. 2010). 
Our results also show a broad spectrum of oxygen-contain-
ing compounds detected in OSPW. Among  On (n = 1–12) 
classes, the  O4–O6 classes are dominant in PAW001 
(Fig. 5a), while the major classes in environmental samples 
(e.g., SB09-239) are  O6–O8 (Fig. 5b). This compositional 
difference between OSPW and environmental samples is 
consistent with the visual differences presented in the KMD 
plots (Supplementary Figure 1a&c), where  O6–O8 classes 
are characterized by higher KMD values compared to the  O4 
class (Hughey et al. 2001). Similar observations on distribu-
tion differences in  On classes were noted by others (Headley 
et al. 2011; Barrow et al. 2015).

On the other hand, the relatively minor contribution of 
 O2 compounds to the overall  On classes in this study (Fig. 5) 
is different from others (Headley et al. 2011; Barrow et al. 
2015). According to previous studies, even in OSPW sam-
ples, relative contributions of  O2 to the overall  On classes 
can vary significantly from sample to sample. Headley et al. 
(2011) reported considerably higher  O2 contribution (rela-
tive to  O4 contributions) in OSPW profiling. But Pereira 
et al. (2013) and Barrow et al. (2015) reported noticeable 
lower  O2 contributions as compared to the  O4 class. From 
the perspective of environmental samples, Yi et al. (2015) 
reported relative lower  O2 contribution in lakes comparing 
to river and snow samples. Certainly, the slight differences in 
instrumentation (FTICR-MS vs Orbitrap) and analytical pro-
cedures (such as pH, solvents and SPE vs LLE) could con-
tribute to these differences (Grewer et al. 2010). Meanwhile, 
this also suggests that the profiling results, in most cases, at 
the current stage of development shall be interpreted quali-
tatively (or semiquantitatively at the best). Caution should be 
used in quantitative applications of these results (Frank et al. 
2014; Yi et al. 2014). In the LLE-1 fraction, it is also impor-
tant to note the distribution of  SOn and  NOn classes. Envi-
ronmental samples (such as SB09-239) lack the  SOn classes 
(Fig. 5b), while OSPW samples (such as PAW001) clearly 
demonstrate the presence of  SOn compounds, particularly 
 SO3 to  SO6 (Fig. 5a). The strong presence of  SOn (n = 3–6) 
classes is confirmed by other (−)ESI (Headley et al. 2011) 
and (−)APPI investigations (Barrow et al. 2015). This sharp 
contrast (presence or absence) highlights the potential of 
 SOn classes in distinguishing OSPW from environmental 
samples, although the stability of these sulfur-containing 
classes—as well as which compounds should be targeted—
needs further investigation.

NOn compounds are relatively more abundant in environ-
mental samples than in OSPW. Organic nitrogen compounds 
have been reported in natural aquatic environments, com-
ing from precipitation and fog (Altieri et al. 2009; Maz-
zoleni et al. 2010). The high O/N ratios (≥ 3), including the 

dominance of  NO5 to  NO8 within the  NOn classes (Fig. 5b), 
are consistent with nitro (–NO2) or nitrooxy (–ONO2) groups 
in the natural environment. The high number of O atoms 
(more than in the –ONO2 functional group) implies that 
these compounds may also possess other oxygenated func-
tional groups.

From the LLE-2 fraction, detected compounds are not 
dominated by  On classes, but rather show abundant sul-
fur-containing and nitrogen-containing compounds.  SOn 
(n = 1–3),  S2On (n = 1–2),  NOn (n = 1–2) and  On (n = 1–3) 
are the major compound classes (Fig. 6). Unlike (+)APPI 
methods (Barrow et al. 2015),  NSOn classes are not detected 
by the (+)ESI method. One sulfur-containing compound 
(i.e.,  SOn) is particularly abundant in the LLE-2 fraction, 
accounting for more than 30% of the RC in the sample from 
OSPW. The ubiquitousness and importance and of  SOn com-
pounds can be further demonstrated when OSPW from indi-
vidual operators is compared (Supplementary Figure 2). It is 
likely that variations in  SOn and  S2On compositions would 
largely explain the statistical distinctions between OSPW 
and environmental samples as demonstrated in Fig. 3b. This 
is consistent with the assertion suggested by Headley et al. 
(2011) that the ratios of the  SOn classes may be useful for 
environmental forensics. More rigorous investigation of the 
persistence and transformation of the signals should be car-
ried out.

Here, we also reiterate the complementary nature of 
LLE-1 and LLE-2 from an elemental composition perspec-
tive.  On and  SOn are classes found in both LLEs fractions. 
In our results, highly oxygenated compounds (n > 3) are 
usually found in the LLE-1 fraction (Fig. 5), while com-
pounds with fewer numbers of oxygen atoms (n < 3) are 
usually found in the LLE-2 fraction (Fig. 6). This finding has 
not been reported in other studies. Although a much larger 
number of compounds and a broader range of classes were 
reported by Barrow et al. (2015), the similar distribution 
of  On and  SOn classes in both positive- and negative-ion 
modes raises a concern that same compounds may have been 
detected in the different modes used. In this study, multiple 
lines of evidence, including the comparison of raw spectra 
(Fig. 2), visualization with Kendrick plots (Fig. 3) and exam-
inations of compositional assignments (Figs. 5, 6), strongly 
suggest that different compounds were detected and profiled 
in LLE-1 and LLE-2 separately.

Concluding remarks

A complementary LLEs approach was developed to concen-
trate and extract the organic compounds in water samples 
into two fractions (LLE-1 and LLE-2), and each fraction was 
characterized by ESI-FTICR-MS. As shown in this study, 
over three thousands organic compounds (represented by 



 Environmental Earth Sciences  (2017) 76:828 

1 3

 828  Page 12 of 13

their unique masses) were detected in individual OSPW 
samples and the organic compounds detected in the two 
LLE fractions were characterized by little overlap and tar-
geted different compound classes. As such, profiles obtained 
from two LLE fractions are complementary to each another, 
while potentially being comprehensive when integrated. 
High percentages of homologous compound series in both 
LLE-1 and LLE-2 have assisted in the determination of the 
elemental compositions of these dissolved organics based 
on the measured accurate masses. Thus, the complemen-
tary LLEs followed by ESI-FTICR-MS analysis provides a 
systematic method for profiling of the organic compositions 
in water samples, which is particularly suitable for envi-
ronmental monitoring studies in the Athabasca oil sands 
region. PCA analysis of the homologue compositions in the 
two LLE fractions suggests statistically significant differ-
ences between the OSPW and environmental water samples, 
with clear separation observed among different operators in 
LLE-2 fractions. The results of compositional sorting based 
upon compound classes further reveal the importance of  SOn 
classes as well as distribution differences in  On classes when 
comparing OSPW samples with environmental samples. 
 SOn (n = 4–6) classes detected in LLE-1 appear to have 
potential use for indicating the source of OSPW, while the 
proportional ratios of  SOn (n = 1–3) in LLE-2 might be a 
means to evaluate the impact of the OSPW. It is important 
that further compilation and evaluation of profiling results 
across the oil sand region shall be carried out using care-
fully documented analytical methods and procedures, while 
standardized approaches remain under development.
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