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Providing students of introductory thermal physics with a plot of the heat capacities of many low

density gases as a function of temperature allows them to look for systematic trends. Specifically,

large amounts of heat capacity data not only allow students to discover the equipartition theorem

but also point to its limited applicability. Computer code to download and plot the temperature-

dependent heat capacity data is provided. # 2023 Published under an exclusive license by American Association
of Physics Teachers.
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The purpose of this paper is to point out a specific instance
in the teaching of thermal physics, where relatively large
amounts of digital data can help students judge the applica-
bility of a physical concept, namely, the equipartition theo-
rem as it relates to the heat capacities of low-density gases of
atoms or molecules. Encouraging students to “weigh the
evidence” helps them practice a skill of working scientists,
who often have to decide if a paper’s conclusions are war-
ranted by its data.

The organization of this paper is as follows: first, the
equipartition theorem is briefly reviewed. Then the common
textbook example of its application to H2 gas is presented.
However, the case of H2 is not representative, as is shown by
plotting the heat capacities of numerous molecules as a func-
tion of temperature. This limited applicability of the equipar-
tition theorem is discussed in the context of introductory
thermal physics courses. Finally, some insight is gained by
considering a simple model for the temperature-dependent
heat capacity of gaseous CO2, which is suitable for study in
statistical mechanics courses.

The equipartition theorem is a result of classical statistical
mechanics. For a precise statement and thorough derivation
see, for example, Ref. 1. Roughly speaking, the theorem says
that each degree of freedom of a system that contributes a
quadratic term to the energy adds kBT=2 to the total average
energy of the system, where kB is Boltzmann’s constant and
T is the absolute temperature. Following Ref. 2, I denote the
number of these contributions as f (per atom or molecule). In
that way, a system of N non-interacting atoms or mole-
cules—each with f degrees of freedom contributing quadratic
terms to the energy—has a total energy of U ¼ fNkBT=2
and, thus, a temperature-independent constant volume heat
capacity of CV ¼ fNkB=2.

In this paper, discussion will be restricted to non-
interacting atoms and molecules; i.e., low-density gases
following the ideal gas law. Nevertheless, the equipartition
theorem is of broader applicability, most notably here to the
heat capacities of single-element solids, as expressed by the
Dulong–Petit law, where f¼ 6; see, for example, Ref. 3. It
also played an important—but sometimes misrepresented4—
role in the history of understanding thermal electromagnetic
radiation; i.e., the Rayleigh–Jeans ultraviolet catastrophe.

The cleanest application of the equipartition theorem is to
monatomic ideal gases. Under the assumption that we can
ignore their internal structure, there are three quadratic
terms in the energy per atom: U=N ¼ p2

x=ð2mÞ þ p2
y=ð2mÞ

þ p2
z=ð2mÞ, where pi are the momenta in three orthogonal

directions and m is the mass of each atom. So f¼ 3 and, thus,
CV ¼ 3NkB=2 for monatomic ideal gases, if the equipartition
theorem applies.

However, the equipartition theorem assumes classical—
not quantum-mechanical—motion. In most cases, the motion
of monatomic gases can be understood classically, and thus,
the theorem works quite well.5 However, once we consider
molecules, we are immediately confronted—as were the
founders of quantum mechanics—by the limited applicabil-
ity of the equipartition theorem due to the quantization of
molecular rotation and vibration.6

An illustrative example of the applicability of the equipar-
tition theorem to low density H2 gas appears in a popular and
well-respected textbook on thermal physics by Schroeder2—
see Fig. 1.13 Figure 1 shows that below about 100 K, H2

behaves like a monatomic gas, with only the translational
degrees of freedom active. At these low temperatures,
molecular rotation is “frozen” out due to quantization of the
rotational energy level structure. However, from about 300
to 1000 K—once rotation has been activated—the equiparti-
tion theorem appears to be applicable again, but with f¼ 5,
the two additional quadratic degrees of freedom correspond-
ing to rotation.14 At about 1000 K, the heat capacity begins
to increase again due to the activation of vibrational motion.

That a theorem based on classical mechanics can be
applied to a quantum mechanical system over limited tem-
perature ranges is not surprising. After all, although the cen-
ter-of-mass motion of atoms and molecules should, in
principle, be described using quantum mechanics, as far as
heat capacities go, the classical picture is normally sufficient;
i.e., CV ¼ 3NkB=2 if there are no internal excitations of the
atoms/molecules. Reif1 indicates that the criterion for
approximate validity of the equipartition theorem is that the
spacing of energy levels around the mean energy be small
compared to kBT. For typical confining volumes, the transla-
tional energy levels may be considered so dense as to be con-
tinuous, and thus, the equipartition theorem is virtually
always applicable to the translational degrees of freedom of
atoms or molecules.

Since the rotational energy level spacings in molecules are
larger than those for translation but typically smaller than
those for vibration, we might expect a temperature range
where the equipartition theorem gives CV ¼ ð ft þ frÞNkB=2
with the contribution due to translation of ft¼ 3 and fr¼ 2 or
fr¼ 3 due to rotation, depending on whether the molecular
geometry is linear ( fr¼ 2; e.g., H2, CO2) or non-linear
(fr¼ 3; e.g., H2O, CH4).15 As noted above, H2 does
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approximately exhibit a temperature-independent heat
capacity CV � ðft þ frÞNkB=2 with ft¼ 3 and fr¼ 2 from
�300 to �1000 K.

At higher temperatures, we expect vibration to become
important. The simplest model for molecular vibration
involves a “linearization” of forces and subsequent decom-
position of internal motions into normal modes, each acting
as an independent harmonic oscillator.16 Since harmonic
oscillators have two degrees of freedom (momentum and
position) contributing quadratic energy terms to the total
energy, we might expect from the equipartition theorem
that there will be a temperature range for which CV

� ðft þ fr þ fvÞNkB=2 with the contribution due to vibration
fv being equal to twice the number of vibrational modes that
a molecule has. For instance, for H2, fv¼ 2, since a diatomic
molecule only has one vibrational mode (corresponding to
the relative motion of the two nuclei). However, as evident
from Fig. 1, there is no extended temperature range over
which the heat capacity for H2 is given by CV ¼ fNkB=2,
where f¼ 7 (as expected from f ¼ ft þ fr þ fv with ft¼ 3,
fr¼ 2, and fv¼ 2). As illustrated in Fig. 1 and discussed later,
some textbooks9 present plots suggesting that H2 does
exhibit a heat capacity plateau corresponding to f¼ 7, at
odds with the research literature.7

A phenomenologically based discussion of heat capacities is
common in first-year general university physics courses and
towards the start of upper-year thermal physics courses (before
a more in-depth treatment of their statistical mechanical ori-
gin).2 Some commonly used textbooks9,17 show a version of
Fig. 1 and briefly discuss the equipartition theorem, without
deriving it. In this context, it may be useful to show students
many more examples of temperature-dependent heat capacities
to help them gauge how general the behavior of Fig. 1 is; i.e.,
do other molecules have temperature ranges with temperature-
independent heat capacities, given by CV ¼ fNkB=2, with f a
positive integer, depending on the temperature range?

For this purpose, Fig. 2 shows the temperature dependence
of a large number of heat capacities, downloaded from the
National Institute of Standards and Technology (NIST)
Chemistry Webbook.10 Rather than choosing molecules that
illustrate the equipartition theorem, all of the available data18

have been plotted, with just a few species omitted for clarity
(which can be added by slightly modifying the plotting code
provided in the supplementary material12)

Figure 2 shows that, in general, the equipartition theorem is
less applicable than one might think from the example of H2

over the temperature range shown by the dark line in Fig. 1.
For the larger polyatomics—unlabeled in Fig. 2—it does not
apply at all, at least in the temperature range shown. There are
no clearly isolated steps in CV with temperature because of the
variety of low and high vibrational mode frequencies,19 as will
be seen below by examining the case CO2 in more detail.

In an introductory thermal physics course, one could intro-
duce Fig. 2 in the following ahistorical manner: after deriva-
tion of the relationship between the average kinetic energy
of a gas molecule and its temperature: U=N ¼ 3kBT=2 (see
pp. 10–11 of Ref. 2), Fig. 2 could be examined with the
(erroneous) expectation that CV ¼ 3NkB=2, independent of
temperature. The difference between the atomic and molecu-
lar cases will naturally lead to discussion of the additional
degrees of freedom of molecules—beyond translation—that
result in larger heat capacities. Also deviations from CV

¼ 3NkB=2 due to electronic excitations of atoms may be
anticipated, although they are not observed for the atoms and
temperature ranges of Fig. 2.

From Fig. 2, students will be able to identify that—besides
CV ¼ 3NkB=2—there is something special about certain other
values of the heat capacity. Specifically, they may observe:

(1) the transition to CV ¼ 5NkB=2 for hydrogen, the propen-
sity to this CV for other diatomics (within limited temper-
ature ranges), and also

(2) the labeled triatomics (except for CO2) show a propen-
sity towards CV ¼ 6NkB=2 at low temperatures; i.e.,
f¼ 6, exhibiting an additional rotational degree of free-
dom beyond the diatomic case.

With this background, the equipartition theorem can be
mentioned, with its limited applicability obvious to students
from Fig. 2. Further discussion may then be deferred until
statistical mechanics is studied. Until then, the equipartition
theorem is just a handy way to remember commonly used
heat capacities: CV ¼ fNkB=2, where f¼ 3 for atomic spe-
cies without electronic excitation, and f � 5 for N2 and O2

near room temperature, which is particularly useful as so
many problems in introductory thermal physics involve the
heat capacity of air. (Figure 2 also gives students a sense of
the temperature range over which f � 5 is a good approxi-
mation for air.) I have found that, by following this
approach, students’ misconceptions regarding the applica-
bility of the equipartition theorem have largely been
eliminated.21

Once students begin their study of statistical mechanics,
they may benefit from a discussion of the role of heat capaci-
ties and the equipartition theorem in the historical develop-
ment of quantum mechanics.6,22

Furthermore, aspects of Fig. 2 are suitable for study in
introductory statistical mechanics. For example, to gain
some insight into the limited applicability of the equiparti-
tion theorem, we may consider a simple model for the tem-
perature dependence of the heat capacity of CO2.15,16

The CO2 molecule has three distinct vibrational mode fre-
quencies, commonly denoted by �1 (symmetric stretch), �2

(bending), and �3 (antisymmetric stretch).23 Defining corre-
sponding characteristic temperatures Hi :¼ h�i=kB, where h
is Planck’s constant, we have H1 � 2000 K;H2 � 960 K,
and H3 � 3380 K.24 If we assume that each mode acts as an
independent harmonic oscillator, then each makes an

Fig. 1. The scaled heat capacity of low-density gaseous H2 as a function of

temperature (Ref. 7) assuming a constant 3:1 mixture of ortho- and para-

hydrogen (so-called normal hydrogen (Ref. 8)). This plot is modelled after

Fig. 1.13 of Schroeder (Ref. 2) (dark line) but is extended over a larger tem-

perature range (by the light solid line) using the results of Ref. 7. The light

dashed line is as shown in Fig. 20.6 from Serway et al. (Ref. 9) who do not

provide details on its origin.
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additive contribution to the heat capacity, given by a stan-
dard result often derived in the context of the Einstein solid
model (e.g., Eq. 7.7.5 of Ref. 1),

CV;i

NkB=2
¼ 2gi

Hi

T

� �2
eHi=T

ðeHi=T � 1Þ2
; (1)

where the gi’s are the degeneracies of each mode. The bend-
ing mode of CO2 (�2) is doubly degenerate, so g2 ¼ 2; other-
wise, g1 ¼ g3 ¼ 1.

Figure 3 shows the individual mode contributions to the
heat capacity of CO2 as computed using this simple model.
Over the temperature range plotted, the equipartition theo-
rem applies to the rotational motion, so that the total heat
capacity is

CV ¼ ð ft þ frÞNkB=2þ
X

i¼1;2;3

CV;i; (2)

with ft¼ 3 and fr¼ 2 (fr¼ 2 instead of 3 since CO2 is a linear
molecule15) and the CV;i’s given in Eq. (1).

In the high-temperature limit, Eq. (1) gives CV;i ¼ giNkB

for gi harmonic oscillators; i.e., f¼ 2 for each oscillator, as
expected from the equipartition theorem.1 Thus, we expect a
jump of Df ¼ 2gi as each mode is activated with increasing
temperature. Since the �2 bending mode has the lowest fre-
quency, we expect it to be activated at a lower temperature
than the �1 and �3 modes. However, Fig. 3 shows that the

activation of the �1 and �3 modes obscure observation of the
�2 plateau.

Furthermore, the low frequency of the �2 bending mode
limits the range over which the f¼ 5 (translation and rota-
tion) plateau may be seen. This behavior is typical of the
larger molecules in Fig. 2, which usually have low frequency
bending and hindered internal rotation modes.16,25

In contrast, the limited number of small polyatomics in
Fig. 2 that show a propensity to f¼ 6 around room tempera-
ture (H2S, H2O, and CH4) do not have low-frequency modes
(also these molecules all have a non-linear geometry and,
thus, rotation contributes fr¼ 3 in contrast to fr¼ 2 for CO2

which is linear15). For example, the lowest vibrational mode
frequency of H2O has H2 � 2300 K in comparison to the
lowest for CO2: H2 � 960 K. The delayed activation of
vibration in H2O facilitates the observation of an f¼ 6
plateau.

Now let us consider the high-temperature limit of the sim-
ple model for the heat capacity of CO2, decomposing the
contributions due to translation t, rotation r, and vibration v
as: f ¼ ft þ fr þ fv in CV ¼ fNkB=2. From the T !1 limit
of Eq. (1) together with the number of modes and their
degeneracies, fv¼ 8. Thus, we expect a heat capacity corre-
sponding to f¼ 13 at high temperatures (from ft¼ 3, fr¼ 2,
and fv¼ 8). However, as the higher temperature heat capacity
data for CO2 in Fig. 4 shows, this limit is approached and
then exceeded as T increases. It is natural to expect this
breakdown of the harmonic oscillator model at such high

Fig. 2. (Color online) The scaled heat capacities of low density gases as a function of temperature, as obtained from the NIST Chemistry Webbook (Ref. 10)

All monatomic and diatomic species are labeled. All unlabeled curves correspond to triatomic or larger species. Many of these molecules are refrigerants,

reflecting the technological importance of their thermal properties; see, for example, Ref. 11. For example, the R-134a label on the plot refers to 1,1,1,2-tetra-

fluoroethane (CH2FCF3), once commonly used in automobile air-conditioners. To give an objective view of the validity of the equipartition theorem, all mole-

cules in the database with CV=ðNkB=2Þ < 16 are shown, except to prevent crowding, I have omitted carbon monoxide, deuterium oxide, and the ortho- and

para- variants of hydrogen and deuterium (the normal mixtures are plotted) (see the supplementary material (Ref. 12) for the PYTHON program to download the

data and create this plot).
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temperatures, for, at the very least, all molecules dissociate
and, thus, do not have an unbounded vibrational energy level
structure (for CO2 from Ref. 26: D=kB � 6� 104 K, where
D is the energy required to break one of the C–O bonds).

Returning to the case of H2, the situation is similar to that
of CO2: there is no f¼ 7 plateau (ft¼ 3, fr¼ 2, fv¼ 2)
observed in CV (the light solid line of Fig. 1), contrary to the
misleading depiction in Ref. 9 (the light dotted line of Fig.
1). As illustrated in Fig. 4, the lack of a f¼ 7 plateau is quite
typical of diatomics. Its absence may be accounted for by a
simple model for anharmonicity in the potential describing
the interaction of the two atoms.27 This model may serve as
a useful computational exercise for students of statistical
physics. Taking into account for anharmonicity in polyatom-
ics is significantly more challenging.27

In summary, giving students of introductory thermal phys-
ics the opportunity to examine the heat capacities of a variety
of molecules allows them to develop a better appreciation of
the applicability of the equipartition theorem than is nor-
mally the case when the heat capacity of H2 is presented
over a limited temperature range.2,9,17 Students of statistical
mechanics may explore the deviations from the equipartition
theorem in more detail, as illustrated here using a simple
model for the heat capacity of CO2.

Finally, it is noted that there is a wealth of digital thermo-
dynamic data available for teaching thermal physics. A par-
ticularly useful resource is the CoolProp library.28 For
example, using the PYTHON interface to CoolProp, students
may explore non-ideal fluid properties, such as deviations
from the ideal gas law, and predict the thermodynamic effi-
ciencies of refrigerators using different fluids; e.g., Sec. 4.4
of Ref. 2. The examination of digital thermodynamic data—
that has only recently become widely available—gives stu-
dents an active role in judging the applicability of what they
are learning.
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